(19) 日本国特	(12) 特	許	公	報(B	2)	(11) 特許番号			
								特許第	6338282号
(4F) 장 소드 FT			0)				(0.1) 20 福 日		(P6338282)
(45) 充行口	平成30	年0月0日(2018.0.1	0)				(24) 登球口	平成30年5月18日	(2018.5.18)
(51) Int.Cl.			FΙ						
GO1N	29 /11	(2006.01)	G	GO 1 N	29/11				
E04G	21/12	(2006.01)	E	04G	21/12	2	1 O 4 Z		
G01N	29/48	(2006.01)	C	GO 1 N	29/48	3			
EO1D	22/00	(2006.01)	E	CO1D	22/00)	А		
EO1D	1/00	(2006.01)	E	01D	1/00)	D		
								請求項の数 4	(全9頁)
(21) 出願番号		特願2014-238283	7 (P2014-23	38287)	(73)特許	許権者	505398952		
(22) 出願日		平成26年11月25	∃ (2014.11	l.25)			中日本高速道	፤ 路株式会社	
(65) 公開番号		特開 2016-99294	(P2016-992	294A)			愛知県名古屋	&市中区錦二丁目1	8番19号
(43) 公開日		平成28年5月30日	(2016.5.3	30)	(73)特許	許権者	505398963		
審査請求日		平成29年5月23日	(2017.5.2	23)		-	西日本高速道	直路株式会社	
							大阪府大阪市	5北区堂島一丁目€	3番20号
					(73)特部	許権者	505398941		
							東日本高速道	直路株式会社	
							東京都千代田	日区霞が関三丁日3	3番2号
					(73)特部	許権者	507194017		
						;	株式会社局速	8道路総合技術研究	むりか
					(7 A) (1) T		東京都町田市 100104570	1忠生一」目4番堆	E T
					(<i>(</i> 4) 17.5	哩八 .	100104570 安理上 上間	8 NZ 87	
						·	升埋工 大勝	り 7054	
								最終	そ頁に続く

(54) 【発明の名称】 PC構造物の診断方法

(57)【特許請求の範囲】

【請求項1】

PC構造物に埋設されたPC鋼材の状態を診断するPC構造物の診断方法であって、 前記PC構造物の所望の位置に設定された測定位置で検知される振動波形の減衰特性を 診断対象値として測定する測定工程と、

前記測定工程に先立ち、前記PC鋼材に破断のない状態において前記測定位置で検出される振動波形の減衰特性を基準値として測定する予備工程と、

前記測定工程により測定された診断対象値を、前記予備工程により測定された基準値と 比較することにより、前記 P C 鋼材の状態を診断する診断工程と、を有する

ことを特徴とするPC構造物の診断方法。

【請求項2】

請求項1に記載のPC構造物の診断方法であって、

前記測定位置に設置された加速度センサにより検出された加速度に基づいて、前記振動 波形の減衰特性を測定する

ことを特徴とするPC構造物の診断方法。

【請求項3】

請求項1または2に記載のPC構造物の診断方法であって、

前記振動波形の減衰特性として対数減衰率を用いる

ことを特徴とするPC構造物の診断方法。

【請求項4】

10

請求項1ないし3のいずれか一項に記載のPC構造物の診断方法であって、 前記予備工程および前記測定工程は、

前記PC構造物の所望の位置に設定された加振位置に所定の振動を加えて、前記測定位 置で検出される振動波形の減衰特性を測定する

ことを特徴とするPC構造物の診断方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、プレストレストコンクリートを用いた構造物(PC構造物)の健全性評価の 10 指標を与える診断方法に関し、特に、既存のPC構造物の一つである橋梁(PC橋)の緊 張材として用いられている鋼材(PC鋼材)の状態確認に好適な診断方法に関する。 【背景技術】

従来、大きな荷重が頻繁に加わる道路橋、鉄道橋等には、PC鋼材を埋設したプレスト レストコンクリートが用いられている。特許文献1には、このようなPC構造物に埋設さ れたPC鋼材の破断を監視する監視システムが開示されている。

[0003]

この監視システムは、PC構造物中を伝播する弾性波を検出するセンサと、このセンサ が検出した弾性波に関するデータを記憶するメモリと、このセンサが基準値を越える弾性 20 波を検出した場合に警告表示を行う制御部と、メモリに記憶された弾性波に関するデータ を出力する通信用ポートと、を備えた2個1組の測定ユニットが、PC構造物の表面に1 組以上設置され、各組における2個の測定ユニット間で同期をとり、各測定ユニットのメ モリに記憶された弾性波に関するデータを、通信用ポートを介して適宜収集できるように 構成されている。この監視システムによれば、PC鋼材が破断した際に解放されるエネル ギーによって基準値を超える弾性波が検出された場合に警告表示することができ、これを 受けて管理者は、各測定ユニットから弾性波のデータを収集して解析することにより、P C鋼材の破断状況を診断することができる。

【先行技術文献】

【特許文献】

【特許文献1】特開2004-061432号

【発明の概要】

【発明が解決しようとする課題】

しかしながら、特許文献1に記載の監視システムでは、PC構造物に1組以上の測定ユ ニットを常設して、弾性波を継続的に監視しなければならない。また、PC構造物に大き な衝撃が加わった場合等、PC鋼材が破断した場合以外であっても、基準値を超える弾性 波が生じる可能性があるため、いずれかの測定ユニットで基準値を超える弾性波が検出さ れた場合に、各測定ユニットに記憶された弾性波のデータを収集・解析して、PC鋼材の 状態を評価する必要がある。このため、PC構造物の健全性の診断にコストと時間がかか る。

[0006]

本発明は上記事情に鑑みてなされたものであり、その目的は、より低コストで効率よく 、PC鋼材の状態を診断することが可能なPC構造物の診断方法を提供することにある。 【課題を解決するための手段】

上記課題を解決するために、本発明では、PC構造物で測定される振動波形の減衰特性 を、PC鋼材に破断のない状態のPC構造物に対して予め同条件で測定しておいた振動波 形の減衰特性と比較することにより、PC鋼材の状態を診断する。

30

[0008]

例えば、本発明は、PC構造物に埋設されたPC鋼材の状態を診断するPC構造物の診 断方法であって、

前記PC構造物の所望の位置に設定された測定位置で検知される振動波形の減衰特性を 診断対象値として測定する測定工程と、

前記測定工程に先立ち、前記PC鋼材に破断のない状態において前記測定位置で検出される振動波形の減衰特性を基準値として測定する予備工程と、

前記測定工程により測定された診断対象値を、前記予備工程により測定された基準値と 比較することにより、前記 P C 鋼材の状態を診断する診断工程と、を有する。

【発明の効果】

【 0 0 0 9 】

本発明者は、PC構造物の振動波形の減衰特性が、PC構造物に埋設されたPC鋼材の 破断の有無で相違することを見出した。本発明では、PC構造物で測定される振動波形の 減衰特性を、PC鋼材に破断のない状態のPC構造物に対して予め同条件で測定しておい た振動波形の減衰特性と比較することにより、PC鋼材の状態を診断する。このため、振 動波形の減衰特性を測定するときにのみ、PC構造物の振動を検出するための装置(加速 度センサ)を稼働すればよく、これらの装置を常時稼働しておく必要がない。したがって 、本発明によれば、より低コストで効率よくPC鋼材の状態を診断することができる。

【図面の簡単な説明】

【0010】

【図1】図1は、本発明の一実施の形態に係るPC構造物の診断方法を説明するためのフ ロー図である。

【図2】図2(A)は、図1の予備工程S1を説明するためのフロー図であり、図2(B)は、図1の測定工程S3を説明するためのフロー図である。

【図3】図3(A)は、載荷・振動試験に用いたポストテンション単純工桁橋1の一部省略した正面図であり、図3(B)および図3(C)は、図3(A)に示すポストテンション単純工桁橋1のA-A断面図およびB-B断面図である。

【図4】図4は、本発明者が実施した載荷・振動試験を説明するための図である。

【図5】図5(A)は、PC鋼撚り線2が1本も切断されていない状態で実施された載荷 ・振動試験により測定された減衰振動波形を表した図であり、図5(B)は、PC鋼撚り 線2が3本切断された状態で実施された載荷・振動試験により測定された減衰振動波形を 表した図である。

【図6】図6は、載荷・振動試験によりポストテンション単純 T 桁橋1の各位置CH1~ CH4で測定された減衰振動波形の対数減衰率を表した図である。

【発明を実施するための形態】

[0011]

以下、本発明の一実施の形態について図面を参照して説明する。

【0012】

本実施の形態に係るPC構造物の診断方法により、PC橋等、既存のPC構造物に埋設されたPC鋼材の状態を診断する。

【0013】

図1は、本実施の形態に係るPC構造物の診断方法を説明するためのフロー図である。 【0014】

図示するように、本実施の形態に係るPC構造物の診断方法は、PC構造物の竣工時等 、PC構造物に埋設されたPC鋼材に破断のない健全な状態において実施される予備工程 S1と、定期点検、臨時点検等の点検時期が到来した場合(S2でYES)に順番に実施 される測定工程S3および診断工程S4と、を有する。

【0015】

図2(A)は、図1の予備工程S1を説明するためのフロー図である。

【0016】

20

30

10

30

40

まず、診断対象となるPC構造物に起振器および加速度センサを設置する(S11)。 ここで、加速度センサは、起振器からPC構造物に埋設されたPC鋼材に伝搬する振動エ ネルギーのロスが少ない1か所以上の位置に設置することが好ましい。一方、起振器は、 PC構造物に埋設されたPC鋼材に振動を加えることができる位置に設置すればよく、例 えばPC鋼材の中央部からPC鋼材長さの1/4までの範囲の任意の位置に設置される。 【0017】

つぎに、起振器を動作させ、所定の加振時間、所定周波数および所定加振力でPC構造物を例えば鉛直方向に起振する(S12)。ここで、PC構造物がPC橋である場合、P C橋に発生させる振動は、車両が走行することにより発生する振動を模したものであるこ とが好ましい。また、起振器による起振開始から所定時間経過によりタイムアウトするま での間、加速度センサを動作させる。そして、その期間中に加速度センサで逐次検出され た加速度に基づいて、起振停止後のPC構造物の減衰振動波形を測定する(S13)。そ れから、起振停止後の減衰振動の減衰特性を表すパラメータとして、例えば、測定した減 衰振動波形の隣り合う振幅の比の自然対数である対数減衰率を算出し、これを基準値に設 定する(S14)。

[0018]

図2(B)は、図1の測定工程S3を説明するためのフロー図である。

[0019]

まず、予備工程S1にてPC構造物に設置しておいた起振器を動作させ、予備工程S1 の場合と同じ起振条件(加振時間、加振力、周波数)でPC構造物を起振する(S31) 20 。また、起振器による加振開始から予備工程S1の場合と同じ所定時間経過によりタイム アウトするまでの間、予備工程S1にてPC構造物に設置しておいた加速度センサを動作 させる。そして、その期間中に加速度センサで逐次検出された加速度に基づいて、起振停 止後のPC構造物の減衰振動波形を測定する(S32)。それから、予備工程S1と同様 に対数減衰率を算出し、これを、PC鋼材の健全性を表す指標となる診断対象値に設定す る(S33)。

[0020]

診断工程S4では、測定工程S3にて設定された診断対象値を、予備工程S1にて設定 された基準値と比較することにより、PC構造物に埋設されたPC鋼材の状態を診断する 。例えば、基準値に対する診断対象値の比率(診断対象値/基準値)、基準値と診断対象 値との差分(診断対象値-基準値)等、基準値に対する診断対象値の変動を表す値が所定 値未満である場合、PC構造物全体としてのPC鋼材の状態を健全と評価する。また、基 準値に対する診断対象値の変動の大きさを表す値が所定値以上である場合には、PC鋼材 に破断の可能性があると判断するとともに、その値に基づいて破断の程度(何本破断した か)を推定する。

【0021】

なお、ここでは、予備工程S1においてPC構造物に設置した起振器および加速度セン サを測定工程S3においてもそのまま利用しているが、予備工程S1の終了時にこれらを PC構造物から撤去するようにしてもよい。そして、測定工程S3の都度、予備工程S1 の場合と同じ設置位置に起振器および加速度センサを設置してS31~S33を行い、測 定工程S3の終了時にこれらをPC構造物から撤去してもよい。

【0022】

また、PC構造物に振動を発生させるために起振器を用いているが、本発明はこれに限 定されない。例えばPC構造物がPC橋である場合、PC橋を走行している車両によって 発生する振動を利用してもよい。

【0023】

本発明者は、PC構造物の載荷・振動試験を行った。

図3(A)は、載荷・振動試験に用いたPC構造物の一部省略した正面図であり、図3 (B)および図3(C)は、図3(A)に示すPC構造物のA-A断面図およびB-B断 50 面図である。

【0025】

図示するように、本発明者は、試験対象のPC構造物として、12 7mmのPC鋼撚 り線2が5本配置されたポストテンション単純T桁橋1を用いた。このポストテンション 単純T桁橋1は、桁長方向の一方の端部11が可動支承により支持され、他方の端部12 が固定支承により支持されている。ポストテンション単純T桁橋1におけるPC鋼撚り線 2の配置位置を含むポストテンション単純T桁橋1の各寸法は、表1に示す通りである。 【0026】

【表1】

析長し	1	17620mm					
支間 Lź	2	17145mm					
桁高 日		1000mm					
フランジ幅	W1	1300mm					
脚幅 ₩	2	400mm					
	A1	80mm					
PC鋼撚り線	A2	75mm					
配置位置	B1	110mm					
	B2	90mm					

表1

[0027]

図 4 は、 P C 構造物の載荷・振動試験を説明するための図である。 【 0 0 2 8 】

図示するように、ポストテンション単純T桁橋1の下面14には、可動支承による支持 位置11から、支間距離L2の約1/4の距離の地点(第1地点)CH1、支間距離L2 の約2/4の距離の地点(第2地点、桁長方向中央部)CH2、および支間距離L2の約 3/4の距離の地点(第3地点)CH3のそれぞれに加速度センサ4を設置する。また、 ポストテンション単純T桁橋1の上面13には、第2地点CH2と第3地点CH3との間 の任意の位置(第4地点)CH4に起振器3を設置するとともに、この起振器3に加速度 センサ4を設置する。そして、ポストテンション単純T桁橋1の上面13において、第2 地点CH2を真中に挟んで距離D(ここでは200mm)離れた2地点のそれぞれに静的 荷重P/2を加えた状態において、起振器3を動作させ、周波数6~7Hzの振動を所定 の加振力で約5秒間加えるとともに、起振器3による起振開始から約20秒を経過するま での間、その期間中に加速度センサ4各々で逐次検出される加速度に基づいて、位置CH

【0029】

このような載荷・振動試験を、ポストテンション単純工桁橋1に埋設されているPC鋼 撚り線2が1本も切断されていない状態から、PC鋼材2の破損を模擬してPC鋼材2を 1本ずつ切断しながら最終的に4本のPC鋼材2が切断された状態となるまでの各状態に ついて行った。なお、PC鋼撚り線2の切断は、ポストテンション単純工桁橋1の桁長方 向中央部CH2をコア削孔することにより行った。

(6)

[0030]

図5(A)は、すべてのPC鋼撚り線2が健全である状態を模擬してPC鋼撚り線2が 1本も切断されていない状態で実施された載荷・振動試験により測定された減衰振動波形 50を表した図であり、図5(B)は、PC鋼撚り線2が3本切断された状態で実施され た載荷・振動試験により測定された減衰振動波形51を表した図である。ここで、縦軸は 加速度(m/s²)を表しており、横軸は時間(sec)を表している。なお、減衰振動 波形50、51の測定位置(加速度センサ4の設置位置)は、桁長方向中央部CH2であ る。また、図では、波形の形状を分かりやすくするために、実際に測定された減衰振動波 形よりも波長を長くして(周波数を低く)表示している。

【0031】

10

20

図5(B)に示すPC鋼撚り線2が3本切断された状態で測定された減衰振動波形51 は、図5(A)に示すPC鋼撚り線2が1本も切断されていない状態で測定された減衰振 動波形50に比べて、起振器3による起振停止後(5秒経過後)における減衰が大きく、 急激に振幅が小さくなっている。

【0032】

図6は、載荷・振動試験によりポストテンション単純工桁橋1の各地点CH1~CH4 で測定された起振停止後の減衰振動波形の対数減衰率を表した図である。ここで、符号6 0a~60eは第1地点CH1で測定された減衰振動波形の対数減衰率を表すグラフであ り、符号61a~61eは第2地点CH2で測定された減衰振動波形の対数減衰率を表す グラフであり、符号62a~62eは第3地点CH3で測定された減衰振動波形の対数減 衰率を表すグラフであり、符号63a~63eは第4地点CH4で測定された減衰振動波 形の対数減衰率を表すグラフである。また、各符号の添え字aは、PC鋼撚り線2が1本 も切断されていない状態で測定された減衰振動波形の対数減衰率を表しており、添え字b は、PC鋼撚り線2が1本切断された状態で測定された減衰振動波形の対数減衰率を表し ており、添え字cは、PC鋼撚り線2が2本切断された状態で測定された減衰振動波形の 対数減衰率を表しており、添え字dは、PC鋼撚り線2が3本切断された状態で測定され た減衰振動波形の対数減衰率を表しており、そして、添え字eは、PC鋼撚り線2が4本 切断された状態で測定された減衰振動波形の対数減衰率を表している。

【 0 0 3 3 】

図示するように、ポストテンション単純工桁橋1のいずれの地点CH1~CH4におい 30 ても、起振停止後の減衰振動波形の対数減衰率がPC鋼撚り線2の切断本数が増加するに したがい増加し、PC鋼撚り線2が3本以上切断された状態で測定された減衰振動波形の 対数減衰率は、PC鋼撚り線2が1本も切断されていない状態で測定された減衰振動波形 の対数減衰率に対して有意な差異がみられた。特に、起振器3が設置されている第4地点 CH4では、PC鋼撚り線2が2本切断された状態で測定された減衰振動波形の対数減衰 率についても、PC鋼撚り線2が1本も切断されていない状態で測定された減衰振動波形 の対数減衰率に対して有意な差異がみられた。なお、実験では、PC鋼撚り線2が5本配 置されたポストテンション単純工桁橋1を用いているが、PC鋼材の配置本数が少ないP C構造物を用いた場合、より少ない本数のPC鋼材が破断した場合でも、PC構造物のプ レストレス量が変化し、PC鋼材が1本も切断されていない状態で測定された減衰振動波 40 形の対数減衰率に対して有意な差異が生じると考えられる。

【0034】

このことから、PC構造物を起振し、その際にPC構造物で検出される起振停止後の振動波形の減衰特性が、PC構造物に埋設されたPC鋼材の破断の有無で相違するため、起振停止後の減衰振動の減衰特性を表すパラメータを、PC鋼材の健全性の表す指標として用いることによって、PC構造物全体としてのPC鋼材の状態を定量的に評価可能であることが分かった。また、点検時に測定された振動波形の減衰特性と、PC鋼材が破断していない状態で予め測定された振動波形の減衰特性との比較により、PC鋼材の破断の程度 (何本破断したか)を推定できることが分かった。 【0035】

10

以上、本発明の一実施の形態を説明した。

【0036】

本実施の形態では、PC構造物を起振し、起振停止後のPC構造物で測定される振動波 形の減衰特性を、PC鋼材に破断のない状態のPC構造物に対して予め同条件で測定して おいた振動波形の減衰特性を測定することにより、PC鋼材の状態を診断する。このため 、振動波形の減衰特性を測定するときにのみ、起振器3および加速度センサ4を稼働すれ ばよく、これらの装置を常時稼働しておく必要がない。また、起振停止後の振動波形の減 衰特性を表すパラメータを、PC鋼材の健全性を表す指標として用いて、PC構造物全体 としてPC鋼材の状態を定量的に診断するようにすれば、PC構造物のプレストレス状態 を効率的に把握することができる。したがって、本実施の形態によれば、より低コストで 効率よくPC鋼材の破断状態を診断することができる。

なお、上記の実施の形態では、起振停止後の減衰振動の減衰特性を表すパラメータとし て、振動波形の減衰特性として対数減衰率を用いているが、本発明はこれに限定されない 。例えば、振動波形の振幅が所定値(加振終了時の振幅の数%)以下となるまでに要する 時間、減衰比等を振動波形の減衰特性を表す数値として用いてもよい。

【符号の説明】

【0038】

1:ポストテンション単純工桁橋、 2: PC鋼撚り線、 3:起振器、 4:加速度センサ、 11、12:ポストテンション単純工桁橋1の桁長方向端部、 13:ポストテ 20 ンション単純工桁橋1の上面、 14:ポストテンション単純工桁橋1の下面

【図1】

义1

【図2】

図2

【図3】

図4

【図6】

フロントページの続き

- (72)発明者 青木 圭一 東京都町田市忠生一丁目4番地1 株式会社高速道路総合技術研究所内
- (72)発明者 宮永 憲一 東京都町田市忠生一丁目4番地1 株式会社高速道路総合技術研究所内

審査官 嶋田 行志

(56)参考文献 米国特許出願公開第2014/0028328(US,A1) 特開2005-106812(JP,A) 特開2005-181302(JP,A) 特開2005-181302(JP,A) 特開2005-083752(JP,A) 特開2005-214937(JP,A) 特開2005-214937(JP,A) 特開平7-310501(JP,A) 特開平7-310501(JP,A) 特開平10-123105(JP,A) 特表2004-522948(JP,A)

(58)調査した分野(Int.Cl., DB名)

G01N 29/00-29/52 E01D 1/00-24/00 E04G 21/12 JSTPlus/JMEDPlus/JST7580(JDreamIII)